Effects of ozone on the foliar histology of the mastic plant (*Pistacia lentiscus* L.)

J. Reig-Armiñana, V. Calatayud, J. Cerveró, F.J. García-Breijo, A. Ibars, M.J. Sanz

Laboratorio de Anatomía e Histología Vegetal “Julio Iranzo”, Jardín Botánico, Universitat de València, c/Quart, 80, 46008 Valencia, Spain

Fundación C.E.A.M., Charles R. Darwin 14, Parc Tecnològic, 46980 Paterna, Valencia, Spain

Departamento de Biología Vegetal, Escuela Técnica Superior del Medio Rural y Enología, Universidad Politécnica de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain

Received 10 February 2004; accepted 2 April 2004

“Capsule”: Ozone causes alterations in the mesophyll, the conductive tissue and the secretory channels of the mastic plant (*Pistacia*).

Abstract

An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O₃) on a Mediterranean evergreen species, the mastic plant (*Pistacia lentiscus* L.). Plants were exposed at three different O₃ levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O₃ were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O₃ related field observations and subtle foliar injury are also given.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Ozone; Foliar injury; Leaf anatomy; Mediterranean species; Mastic plant; *Pistacia*; Spain

1. Introduction

At the present time, ozone (O₃) is considered to be the most important air pollutant worldwide (Krupa et al., 2001). During the past decades, a global increase in the lower troposphere O₃ levels has been observed over the Northern Hemisphere. This has been attributed primarily to the increases in anthropogenic O₃ precursors (Volz and Kley, 1988). The Mediterranean Basin is one of the critical areas for photo-oxidant formation (Millán et al., 1992). It is regarded as a large photochemical reactor where intense solar radiation, high temperatures and the particular re-circulation dynamics of the polluted air masses favour the formation and accumulation of O₃ (Millán et al., 1996, 1997, 2002; Sanz and Millán, 1998). As a consequence, O₃ concentrations reach phytotoxic levels (Bussotti and Ferretti, 1998; Fumagalli et al., 2001; Reinert et al., 1992; Sanz and Millán, 1998, 2000; Velissariou et al., 1992).

Visible foliar injury is one of the most striking effects of O₃ on many native plant species in central and southern Europe (Cozzi et al., 2000; Gimeno et al., 1992; Innes et al., 2001; Novak et al., 2003; Sanz et al.,...
ORNUS realistic O3 concentrations, probably due to its mor-

helm oak (Quercus ilex) showed that it is tolerant at realistic O3 concentrations, probably due to its mor-

phology, anatomical structure and ecological adapta-

ation (Manes et al., 1998). In contrast, others found visible foliar injury symptoms (dark pigmented stip-

les), and a reduction in stem diameter in Q. ilex subsp. ballota (Inclán et al., 1999). Ozone effects have been also reported on other Mediterranean species such as Arbutus unedo, Ceratonia siliqua, Laurus nobilis, Olea europaea subsp. sylvestris, Phylirea latifolia, and Quercus coccifera, including impairment of net photosynthesis, increased anti-oxidant levels, and reductions in stem growth (Elvira et al., 2003, Inclán et al., 1999; Paoletti et al., 2003). Ozone-like visible injury has been observed in a few evergreen species in the field (Cozzi et al., 2000; Sanz et al., 2003), and has also been induced in seedlings under controlled conditions in Open-Top Chambers (OTCs) and Continuous Stirred Tank Reactors (CSTRs) (Skelly et al., 1999; Sanz and Millán, 2000; Sanz et al., 2001a,b, Orendovici et al., 2003). Some of the symptomatic species found in those fumigation experiments were C. siliqua, Fraxinus ornus, Fraxinus angustifolia, Pistacia lentiscus, and Pistacia terebinthus, although highly variable in their sensitivity.

Compared to the cellular-level effects of O3 on conifers (Barnes et al., 1999; Dalstein et al., 2002; Soda et al., 2000), and many deciduous broadleaf species such as Betula pendula, Fagus sylvatica, Fraxinus excelsior, Prunus serotina and Sorbus aucuparia (Günthardt-Goerg et al., 2000; Oksanen et al., 2001; Pääkkönen et al., 1998), very little information is available on evergreen Mediterranean species. Bussotti et al. (2003) reported some ultra-structural changes in A. unedo following O3 fumigation, including an increase in thickness of the cuticle, degeneration of the cytoplasm in the epidermal cells and tannin deposition on the outer primary walls of those cells.

The present study has been carried out in connection with the surveys of visible injury in native plants, launched by the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests) (Sanz et al., 2003; http://gva.es/ceam/ICP-forests). It is the first in a series on histological and cytological effects of O3 on plants in the Mediterranean Basin. P. lentiscus (mastic plant, lentisc) is distributed throughout the entire Mediterranean basin, being characteristic of the native shrub land (with Q. cocciferae—Pistacietum lentisci Br.-Bl.). It is an evergreen bush of 1–2 m height, although it can grow up to 6–7 m under favourable conditions. It is rich in resin (mastic) and in tannins (Costa, 1999). Mastic is used in chewing gum. The berries are used for making perfume and sometimes sweets or liqueurs.

2. Materials and methods

2.1. Experimental site

The study was conducted at “La Peira” (Benifaió, 39°16'14.8"N, 00°26'59.6"W, 30 m MSL), 20 km South of Valencia (eastern Spain), in a rural area with no important air pollutant sources in the vicinity (Sanz, 1996).

2.2. Plant material

P. lentiscus saplings were obtained from a regional nursery (Viveros Todoli, Alicante) and were kept in filtered air for 14 months before the exposures. The saplings were grown in 71 containers filled with 60% peat moss, 20% coco-peat, and 20% sand (pH ~ 7.0). A slow release fertilizer was incorporated (Osmocote plus, N:P:K 15:12:13 + additional micronutrients). Plants were irrigated regularly to avoid any drought stress.

2.3. Ozone exposures

The experiment was conducted with three NCLAN (National Crop Loss Assessment Network, US.EPA) type Open-Top Chambers (OTCs). Air quality inside and outside the chambers was continuously measured (sharing the monitoring instruments between treatments, in set time cycles) with ozone (Dasibi 1008-AH, Environmental Corp.), and nitrogen oxides’ (Dasibi 2108, Environmental Corp.) monitors, calibrated periodically. Additional meteorological data (e.g. temperature, precipitation, wind direction and speed) were also recorded. Saplings were exposed to three different treatments: charcoal filtered air (CF), non-filtered air + 40 ppb (NF + 40), and non-filtered air + 80 ppb (NF + 80) O3. Since during the previous years several lentisc saplings were also grown in the ambient air and its O3 levels did not result in visible foliar injury symptoms, a chamber-less, ambient air treatment was not established. Plants were fumigated from 29 May to 7 November 2002, 8 h a day, from 10:00 to 18:00 h, 7 days a week. Ozone was generated from oxygen using a high-voltage electrical discharge generator (SIR S.A.). Leaf samples for microscopy were collected before exposure (20 May 2002), and then weekly after the exposures started, except at the end of the exposures, when sampling was done once every 2 or 3 weeks.

In addition to daily (24 h) and 12 h (8:00–20:00 h CET) mean O3 concentrations, the accumulated O3
exposure over a threshold of 40 ppb (AOT40, Fuhrer et al., 1997) was also calculated from hourly averages, during daylight hours with solar radiation > 50 W m\(^{-2}\) (Table 1).

2.4. Microscopy methods

Leaf samples were fixed in situ with FAA (formyl acetic alcohol). After washing with a 0.1 M phosphate buffer (pH 7.4), they were dehydrated by means of an ethanol series. Some of the samples were then embedded in paraffin wax (Histosec, Merck), with a melting point of 56–58°C; isoamyl acetate was used as an intermediate solvent between ethanol and the paraffin. The infiltration time was 30 min and the temperature was 60°C. The resulting blocks were then cut in 8 μm sections with an Anglia Scientific microtome and stained with safranin and fast green (Johansen, 1940).

Other samples were embedded in LR-White medium grade acrylic resin (London Resin Co.). The sectioning of those blocks was done with a Sorvall MT 5000 ultramicrotome (Knifemaker, Reichert-Jung) provided with special glasscutters (45°) (Leica 6.4 mm Glass Strips). This microtome allowed for semi-thin sections (1.5 μm). Those samples were stained with toluidine blue.

Sections were observed and photographed with an Olympus Provis AX 70 brightfield microscope fitted with an Olympus Camedia C-2000 Z camera. Additional samples to be observed through scanning electron microscopy were dehydrated in an ethanol series and dried to critical point in a Denton DPC-1 apparatus, coated with a gold–palladium mixture using an Edwards S-150 marker and observed under a Hitachi S-500 scanning electron microscope (University of Valencia Electron Microscope Service).

3. Results

3.1. Modifications in the anatomy

3.1.1. Effects of leaf age

Over time, natural senescence processes affected the anatomy of the leaves exposed to sub-ambient levels of O\(_3\) (CF). Clear differences could be seen between young and mature leaves. In young leaves (Figs. 1-4, semi-thin cross sections 1.5 μm thick), a single layer of palisade parenchyma (PP), a transition zone and a spongy parenchyma with few intercellular spaces were present. The plastids in all the parenchyma cells were small and almost free of starch (Fig. 2). The cells showed a very thin primary wall and a transparent vacuole content. The epidermis (Ad and Ab, of the adaxial and abaxial sides of the leaves, respectively) was covered by a very thin although well ornamented cuticle (Fig. 3). There was a slight difference between the sub-epidermal layer (SE) and the spongy parenchyma layer (SP), the cells of the former being smaller in size. The transition zone (TZ) was hardly distinguishable. The stomata scarcely developed upper walls, and the cytoplasm of the occlusive cells occupied more than 50% of the cellular volume (Fig. 4).

In mature leaves (Figs. 5-8, semi-thin cross sections 1.5 μm thick; and Figs. 9, 10, paraffin-embedded 8 μm thick cross sections) the palisade parenchyma was structured in two layers, both made up of cells with vacuoles. The vacuoles showed a very dense content, most probably tannins, with an affinity for safranin (Figs. 9, 10). The plastids were large, spherical and full of starch (Fig. 5). The cell wall was thin. The cells in the transition zone were intermediate in size, without dense vacuolar content and with abundant, large plastids (Fig. 7). The epidermis developed a much thicker cuticle, with less ornamentation than in young leaves (Figs. 5, 6). The spongy parenchyma followed the same pattern.

Table 1

<table>
<thead>
<tr>
<th>Plant sampling date</th>
<th>AOT40 (ppb h, for daylight hours with solar radiation > 50 W m(^{-2}))</th>
<th>12-h mean (ppb)</th>
<th>24-h mean (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CF</td>
<td>NF + 40</td>
<td>NF + 80</td>
</tr>
<tr>
<td>20/05/02</td>
<td>0</td>
<td>2639</td>
<td>4381</td>
</tr>
<tr>
<td>05/06/02</td>
<td>0</td>
<td>4688</td>
<td>8929</td>
</tr>
<tr>
<td>12/06/02</td>
<td>1</td>
<td>7177</td>
<td>13315</td>
</tr>
<tr>
<td>19/06/02</td>
<td>1</td>
<td>9788</td>
<td>18120</td>
</tr>
<tr>
<td>26/06/02</td>
<td>1</td>
<td>11836</td>
<td>21936</td>
</tr>
<tr>
<td>03/07/02</td>
<td>0</td>
<td>14169</td>
<td>25860</td>
</tr>
<tr>
<td>10/07/02</td>
<td>0</td>
<td>16356</td>
<td>30051</td>
</tr>
<tr>
<td>17/07/02</td>
<td>3</td>
<td>19458</td>
<td>35193</td>
</tr>
<tr>
<td>26/07/02</td>
<td>3</td>
<td>24631</td>
<td>46607</td>
</tr>
<tr>
<td>05/09/02</td>
<td>3</td>
<td>28827</td>
<td>53888</td>
</tr>
<tr>
<td>07/10/02</td>
<td>3</td>
<td>39672</td>
<td>64733</td>
</tr>
</tbody>
</table>
as the palisade parenchyma with reduced intercellular spaces. Cells of the sub-epidermal layer also showed vacuolar content, although less dense than in the spongy parenchyma, with large and abundant plastids (Fig. 8). The stomata increased the thickness of the wall at the expense of the cytoplasmic content, which was less than 50% (Fig. 8).

3.1.2. Effects of \(\text{O}_3 \)

In comparison with plants grown at sub-ambient \(\text{O}_3 \) levels (CF), \(\text{O}_3 \) enriched treatments (NF + 40 and NF + 80) strongly accelerated leaf senescence. Furthermore, \(\text{O}_3 \) also induced other more characteristic histological alterations (described in the following section). At the beginning, plants exposed to both NF + 40 and NF + 80 regimes exhibited similar modifications, but clearly longer exposure periods resulted in more intense effects on the tissues and cells in plants from the NF + 80 treatment.

3.1.2.1. The palisade parenchyma. Figs. 11 and 12 (semi-thin sections) show initial effects of \(\text{O}_3 \) on the palisade parenchyma cells. Tannin vacuoles in the affected areas changed, with one super-imposed on the other, giving the cell an overall striated look (Fig. 11). Staining with toluidine blue produced a variable coloration of the contents of the vacuoles; some were orange while others were more or less intense blue. The density of the vacuolar content was notably lower. With higher \(\text{O}_3 \) doses and longer exposure times, the vacuoles degenerated completely; their tonoplast disintegrated and their content was mixed with the cytoplasm (Fig. 12). Chloroplasts in the affected zones tended to decrease in both size and number. After approximately three weeks at the highest \(\text{O}_3 \) treatment (NF + 80 ppb), several darker granulations resembling plastoglobuli appeared in the centre of the chloroplasts (Fig. 12). During the course of approximately one month, there was a progressive degeneration by zones, in the cell walls of those parenchyma cells. They become deteriorated and acquired a rough appearance. As a result, there was an increase in the size of the intercellular spaces (Fig. 13).

3.1.2.2. The spongy parenchyma and transition zone. In the spongy parenchyma, plants from the NF + 40 ppb treatment, showed a series of alterations with respect to the corresponding pattern described for unaffected leaves after a 7-day exposure (Figs. 14, 15). As was the case with the palisade parenchyma, a stacking of the tannin vacuoles with a variable aspect was observed. There was also a reduction in the size and number of chloroplasts, although it was less marked than in the palisade parenchyma. Similar alterations also occurred in the sub-epidermal layer (Fig. 15), but the transition zone was scarcely affected (Fig. 14).

At a higher \(\text{O}_3 \) dose (NF + 80 ppb) and longer exposure times (1 month), the degenerative processes become more acute. Vacuoles disappeared, with their content mixed with the cytoplasm (Figs. 16, 17, semi-thin sections, and Fig. 18, in paraffin). The chloroplasts degenerated and plastoglobuli were formed. The walls became more irregular and deteriorated. In some areas, wart-like protrusions of the cell walls appeared (Fig. 16). The intercellular spaces became larger (Figs. 16, 18). The plastids in the transition zone were reorganized, occupying the middle of the cell, probably due to the disappearance of the central vacuole (Fig. 17). These plastids also showed a more irregular and less refringent appearance.

Safranin and fast green staining revealed the presence of granulations in the chloroplasts with a high affinity for safranin (Fig. 19). They were especially visible in...
those cells lacking tannins, since those compounds also react with safranin resulting in the masking of the granulations. At the end of the treatment, however, granulations became denser with a higher affinity for the safranin, thus becoming recognizable even in cells rich in tannins.

3.1.2.3. The epidermis and the stomata. The cuticular ornamentations that were very sharp in the control plants (CF) (Figs. 3–6, 22) became smooth, flat and waxy in appearance in the O$_3$-treated plants (Figs. 20, 21, 23). A thickening of the adaxial cuticle was also observed (Fig. 11), due mainly to the increase in the size of the cuticular layer. Microscope sections of leaves exposed to the O$_3$ enrichment showed a considerable increase in the thickness of the external tangential walls of the epidermal cells. The thickening was produced by the accumulation of a dense material, with affinity for toluidine blue (staining dark blue, in contrast with the light blue colour of the lignified secondary walls) (Fig. 12). In the abaxial epidermis, the O$_3$-treated plants (Figs. 20, 21) exhibited a considerable reduction in cytoplasmic volume, which was about 30% after only a month, due to a substantial increase in the thickness of the walls, especially the upper. Time, as it progressed accelerated the accumulation of wall material in the O$_3$-treated plants.

Anomocytic stomata also changed as a result of the O$_3$ action. In the cross sections of the stomata from the control-plants, the lower wall of occlusive cells was much thicker than the upper. Between both walls, the cytoplasm occupied about 50% of the total cell volume (Fig. 4) in juvenile leaves, and less in mature leaves (Fig. 8). In O$_3$-fumigated plants, the wall thickness of the occlusive cells increased, finally becoming inoperative (Figs. 20, 23 compared with Fig. 22).

3.1.2.4. The conductive bundles and the secretory channels. In contrast to the vascular bundles in the unaffected leaves (Fig. 24), in the xylem of the O$_3$-treated leaves, an increase in the thickness of the lignified secondary wall reinforcements was observed, resulting in a reduction of the lumen diameter of vascular elements (Fig. 25) in the metaxylem area. The phloem bundles in the O$_3$-treated plants also changed in appearance: the walls turned sinuous and slightly thicker, thus reducing the lumen of the cells, especially in the older leaves. In addition, the contents of some of the phloem cells became denser (Fig. 25), more visibly so in those that surrounded the secretory channels (Fig. 27).

The secretory channels in the O$_3$-treated leaves also seemed to undergo modifications; the cells that covered the secretory channels seemed to be in a process of degradation (Fig. 27) or in some way altered when compared with the cells that covered the normal channels (Fig. 26).

3.2. Visible injury

During 2002, plants showed no visible injury on the leaves or only a very slight intervenial reddening (AOT40 for the entire study period in NF + 80 ppb treatment was 64,733 ppb h, Table 1). In contrast, in a previous experiment conducted in 1998, plants developed clear O$_3$-induced foliar injury symptoms after just 14 days of exposure (AOT40 = 8808 ppb h):
intervenial areas of the older leaves became reddish, while veins remained green (Fig. 28). Symptoms were more intense in the oldest leaflets of the composite leaves, but did not affect the abaxial side. Similar symptoms were also observed during exposures in 2001, but plants developed readily visible symptoms only after 141 days (AOT40 74,036 ppb h).

4. Discussion

The present study showed that under the experimental conditions, O3 had a deleterious effect on the leaves of *P. lentiscus*. As a summary, the following anatomical effects have been observed. (1) Modifications in the palisade parenchyma: (a) chloroplasts in the affected zones tended to decrease both in size and number and finally degenerate; plastoglobuli appeared in their stroma; (b) vacuoles were altered and later degenerated and their tonoplast disintegrated; (c) tannins were first anomalously stacked, and later homogeneously distributed within the vacuoles; (d) cell walls became thickened and developed wart-like protrusions; (e) mesophyll cells collapsed, and there was an increase in the size of intercellular spaces. (2) Modifications in the spongy parenchyma: similar to those of the palisade parenchyma, with a granulation of the stroma. (3) Modifications in the epidermis and stomata: external tangential walls of the epidermal cells became thickened, consequently reducing cytoplasmic volume of the cells, and stomata finally become inoperative. (4) Modifications in conductive bundles: an increase in the lignified tracheids (Matyssek et al., 2002). All those alterations, especially in the phloem, were probably relevant for transport and carbon allocation within the plant. However, as far as we know, the modifications in the secretory channels as a response to O3 are reported here for the first time. Those channels are responsible for mastic secretion, a resin rich in tannins. Secretory cells of the channels experience similar changes in their tannin content as those reported for the mesophyll cells, and the cells finally become deformed and partly broken. Those alterations have also been observed in a parallel experiment with the congeneric plant *P. terebinthus* (unpublished).

Ozone affects the evergreen mastic at the cellular level along similar patterns as in deciduous plants. However, the presence of a thick epidermis and a relatively high specific leaf area (SLA, area of leaf divided by its dry mass) makes symptom expression of the injury in this species less apparent than in plants with thinner leaves and epidermis. Low SLA and large intercellular spaces in the leaves are features considered to favour symptom expression in plants (Gravano et al., 2003). Therefore, hardening of plant leaves may be an important factor affecting symptom onset and development in evergreen plants, and may partly explain the variation among individuals and years. Since *P. lentiscus* is a perennial with extended foliar longevity, it would be of interest to elucidate whether the observed adverse effects of O3 are persistent for more than a single growing season or whether carry-over effects occur or whether repair mechanisms are able to compensate the stress during periods of low O3 (autumn and winter). A “memory” effect has been suggested for conifers, where symptom development may be delayed by many months after the O3 exposure (Sandermann, 1996) and also in grape, where
the response of plants to O₃ at a given time depends on the previous year exposures (Soja et al., 2003).

Caution should be used in the extrapolation of the results from the study to field conditions. In addition to the artificial experimental conditions, there are uncertainties in scaling the O₃ response of seedlings and saplings to mature plants, seedlings often having for example, higher stomatal conductance than adult plants (Chappelka and Samuelson, 1998). Higher stomatal conductance enhances O₃ uptake, and may favour deleterious effects at the cellular level. Water availability, nutrient status of the plants, air temperature and humidity, wind speed, and incident light levels are known to affect gas uptake rates (US-EPA, 1996). Particularly relevant for Mediterranean conditions are soil moisture and Vapour Pressure Deficit (VPD) governing stomatal conductance and hence, O₃ uptake. Soil moisture affects the onset, development and severity of foliar O₃ injury in some species, with more symptoms under well-watered conditions (Schaub et al., 2003). P. lentiscus is a drought-avoiding species, with a prompt response to drought stress by stomatal closure, to prevent severe tissue dehydration (Vilagrosa et al., 2003); and consequently decreased O₃ flux into leaves. However, in some parts of the Mediterranean, high O₃ episodes also occur during spring (Sanz et al., 2001a,b), when stomatal conductance is not impaired by the midsummer drought. Possible effects of those O₃ episodes on vegetation remain to be established under the Mediterranean conditions. Ozone-like foliar injury symptoms (reddening affecting the intervenial areas of the upper surface) on P. lentiscus, have been observed sporadically under field conditions (Sanz and Millán, 2000). Homogeneous reddening, affecting also the veins, has been observed in the field and might be attributed to O₃. It has been suggested that microscopy (the presence of characteristic cellular alterations as those described in this study) may be a complementary tool to field observations in discriminating possible O₃ effects (Sutinen and Koivistó, 1995; Vollenweider et al., 2003) and early detection, before the onset of visible injury. From a practical viewpoint, however, in extensive monitoring studies of the effects of O₃ on natural vegetation, microscopy may be quite time consuming and may not always be sufficiently specific to be used alone.

Acknowledgements

M.J.S. and V.C. thank the DGCN (MMA) and Conselleria de Medi Ambient (project FORMEDO-ZON, Interreg III B) for funding this study, and Generalitat Valenciana and Bancaixa for their continuous support of Fundación CEAM. We are also indebted to Prof. Sagar Krupa for useful suggestions. We thank Carmen Martín for collecting the plant material periodically and for taking care of the plants. José Martín, owner of “La Peira” farm, is also acknowledged for providing facilities to conduct our work.

References

